Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Формулы площади геометрических фигур

ПЛОЩАДЬ ТРЕУГОЛЬНИКА И ЧЕТЫРЕХУГОЛЬНИКА. КОРОТКО О ГЛАВНОМ

Прямоугольный треугольник

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но, думай сам…

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время
.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором
и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье —

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

При решении планиметрических заданий курса геометрии нередко встречается фигура с 4-мя сторонами. Да, речь идет о четырехугольнике. Произвольный многоугольник с четырьмя углами встречается реже, чем его частные случаи, – трапеции, дельтоиды, параллелограммы. В последнюю «группу» входят также ромбы, прямоугольники, квадраты.
Рассмотрим, какие данные фигуры необходимо знать, чтобы рассчитать ее площадь.

Таблица с формулами площади треугольника

исходные данные(активная ссылка для перехода к калькулятору)эскизформула
Для всех треугольников
1
2
3
4
5

где 

6
Для равнобедренных треугольников
7
8
9
10
11
Для равносторонних треугольников
12
13
14
15
Для прямоугольных треугольников
16
17
18
19
20
21

где  

Определения

Площадь треугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной тремя отрезками (сторонами), которые соединяют три точки (вершины), не лежащие на одной прямой.

Треугольник – это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Отрезки называют сторонами треугольника, а точки – вершинами треугольника.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 — 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = — 3.915.

Как поступить с правильным многоугольником, у которого больше четырех вершин?

Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы.

Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула:

Sn = 1/2 * n * Rn2 * sin (360º/n), где n — количество вершин многоугольника.

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R2;
  2. квадрата: S = 2 * R2;
  3. шестиугольника: S = (3√3)/2 * R2.

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Немного теории о многоугольниках

Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет. Они дают название получившейся фигуре. Это может быть:

  • треугольник;
  • четырехугольник;
  • пяти- или шестиугольник и так далее.

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Площадь четырехугольника по четырем сторонам и двум диагоналям

Сторона aСторона bСторона cСторона dДиагональ eДиагональ fТочность вычисленияЗнаков после запятой: 2РассчитатьПлощадь save Сохранить share Поделиться extension Виджет

Вы знаете длины четырех сторон и то, что четырехугольник является вписанным в окружность. Тогда вы имеете дело с частным случаем формулы Бретшнайдера (сумма двух противолежащих углов известна и равна 180), известным как формула Брахмагупты.

, где s — полупериметр Для вычисления можно использовать калькулятор выше, введя произвольно два угла так, чтобы их сумма составляла 180. Вывод самих формул Бретшнайдера можно посмотреть .

Ну и напоследок еще раз упомяну, что зная только длины четырех сторон вычислить площадь четырехугольника нельзя, так как нельзя однозначно определить его вид — нужно еще какое-нибудь ограничивающее условие. Так как у нас на сайте довольно часто просили посчитать площадь четырехугольника только по четырем сторонам, то еще есть вот такой вот шуточный калькулятор: , который бесконечно рассчитывает такие площади.

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY
.

Дан квадрат ABCD
, расположенный в системе координат XY
. Найти площадь фигуры, если координаты вершин A
(2;10); B
(10;8); C
(8;0); D
(0;2).

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле:
Найдем одну из сторон, к примеру, AB
:
Подставим значения в формулу:
Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади:

Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку

Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.

Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.

[править] Формулы

Формулы в векторной и координатной форме

Введём обозначения:

\bar r_1=(x_1,y_1,z_1) — радиус-вектор первой точки;

\bar r_2=(x_2,y_2,z_2) — радиус-вектор второй точки;

\bar r_3=(x_3,y_3,z_3) — радиус-вектор третьей точки;

\bar r_4=(x_4,y_4,z_4) — радиус-вектор четвёртой точки;

\bar n=(A,B,C) — нормаль к плоскости, проходящей через три заданные точки;

SΔ — площадь треугольника, построенного по трём заданным точкам;

Sчетыр — площадь четырёхугольника, построенного по четырём заданным точкам.

где

Формула Брахмагупты

Рассмотрим четырёхугольники, вокруг которых можно описать окружность и у которых порядок следования вершин 1, 2, 3, 4. Для нахождения их площади можно использовать формулу Брахмагупты.

Введём обозначения:

a — длина стороны четырёхугольника, расположенной между первой и второй точками;

b — длина стороны четырёхугольника, расположенной между второй и третьей точками;

c — длина стороны четырёхугольника, расположенной между третьей и четвёртой точками;

d — длина стороны четырёхугольника, расположенной между первой и четвёртой точками;

p — полупериметр четырёхугольника, построенного по четырём заданным точкам.

где

  • Когда одна из сторон четырёхугольника стремится к нулю, тогда формула Брахмагупты превращается в формулу Герона для площади треугольника.
  • Когда четырёхугольник является прямоугольником и a≠b, тогда формула Брахмагупты превращается в формулу площади прямоугольника, Sпрямоуг=ab, где c=a, d=b, p=a+b.
  • Когда четырёхугольник является равнобедренной трапецией и b=d, тогда формула Брахмагупты превращается в формулу площади трапеции, Sравн.трап=h(a+c)/2, где h2=(p-a)(p-c), p-b=(a+c)/2.

Один из методов определения площади четырехугольника состоит в разбиении фигуры на два треугольника с помощью диагонали и в вычислении суммы площадей образовавшихся треугольников.

Определения и соглашения

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  1. Четырёхугольник — это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
  6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

Площадь участка сложной формы

Подумалось, что остановить их можно только написав вот такой шуточный калькулятор.

(Нажмите кнопку «Остановить» для определения площади понравившегося Вам четырехугольника с заданными Вами сторонами). Длина стороны A Длина стороны B Длина стороны C Длина стороны D Площадь неправильного четырехугольника, зная только длины сторон, вычислить нельзя. Надеюсь, эта демонстрация поможет понять это всем, кто просил создать для этого калькулятор.

Надеюсь, эта демонстрация поможет понять это всем, кто просил создать для этого калькулятор. Зачем нужно знать площадь полаОпределение площади прямоугольного помещенияРасчет площади комнаты неправильной планировкиУзнаём площадь треугольного помещенияКак рассчитать площадь стен комнатыКак рассчитать площадь стен комнаты Пропорции между площадью пола и окон Невозможно проводить ремонт напольной поверхности, не зная точную площадь пола в частном домовладении или квартире. Дело в том, что сегодня стоимость строительных материалов достаточно высокая, и каждый владелец недвижимости старается максимально сэкономить на их покупке.

Поэтому информация, как рассчитать площадь пола, не будет лишней для того, кто предпочитает делать ремонт собственноручно.

Как найти площадь четырехугольника – трапеции

Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  • Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2,a и b – основания,h – перпендикуляр-высота.
  • Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h,k – линия средины.Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2,d1, d2 – диагонали,β – угол, полученный путем их пересечения.
  • Заданы 4 стороны: S = ((m + l)√k 2 – ((m – l) 2 + k 2 – d 2) 2 /(4(m – l) 2))/2,m, l – стороны параллельные,k, d – стороны боковые.

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

Определение площади

Что такое площадь? Странный вопрос — не правда ли? В обычной жизни мы привыкли к тому, что у всяких плоских фигур (таких как поверхность стола, стула, пол наших квартир и т.д.) есть не только длина и ширина, но и какая-то еще характеристика, которую мы, не задумываясь, называем площадью. А теперь вот давай задумаемся: что же все-таки такое площадь?

Давай начнем с самого простого. За основу берется тот факт, что:

Другими словами, площадь квадрата со стороной метр мы считаем одним «метром площади».

Посмотри внимательно на картинку и убедись, что там действительно нарисован — «метр квадратный»! И запомни обозначение.

А вот теперь хитрый вопрос: а что такое? Площадь квадрата со стороной? А вот и нет!

Смотри: квадрат со стороной.

А чтобы получить квадратных метра (то есть,), мы должны нарисовать, например так:

А как получить, скажем, ? Ну например так:

Да и вообще, если мы возьмем прямоугольник, у которого стороны равны метров и метров, то в этом прямоугольнике:

Поместится ровно квадратных метров. Посмотри внимательно: у нас есть «слоев», в каждом из которых ровно квадратных метров.

Значит, всего в прямоугольнике размером x поместилось квадратных метров. Вот это число, сколько квадратных метров поместилось в прямоугольнике, и есть его площадь .

А если фигура — вовсе не прямоугольник, а какая-то абракадабра?

Удивлю тебя — бывают такие ужасные абракадабры, для которых совершенно невозможно установить сколько там квадратных метров. Даже приблизительно! К сожалению нарисовать такие фигуры — невозможно.

Но они есть! Они похожи, например, на такую «расческу» с очень мелкими зубьями.

И вот, для нормальных фигур можно интуитивно (то есть для себя) считать,что площадь фигуры — это такое число, сколько в этой фигуре «поместится» квадратных единиц (метров, сантиметров и т.д.) Более строгое, «настоящее» определение площади смотри в следующих уровнях теории.

И представь себе, математики для многих фигур научились выражать площади через какие-то линейные (те, что можно измерить линейкой) элементы фигур. Эти выражения называются «формулы площади». Формул этих довольно много — математики долго старались. Ты постарайся запомнить сначала самые простые и основные формулы, а потом уже те, что посложнее.

Шаги

Часть 1 из 2:

Как вычислить площадь

1

Вычислите периметр. Периметр равен сумме всех сторон многоугольника. Если многоугольник правильный, периметр равен произведению одной стороны на число сторон «n».
X
Источник информации

2

Найдите апофему.Формула для вычисления апофемы: а = s/(2tg(180/n)), где «s» — сторона, «n» — число сторон. Апофема — это перпендикуляр, опущенный из центра многоугольника на любую из его сторон. Найти апофему немного сложнее, чем периметр.

3

Запишите формулу для вычисления площади. Площадь любого правильного многоугольника вычисляется по формуле: S = (a * p)/2, где «a» — апофема, «p» — периметр.

4

Подставьте значения «а» и «р» в формулу, чтобы вычислить площадь. Для примера рассмотрим шестиугольник (n = 6), сторона которого равна 10 см (s = 10).
Периметр: р = n * s = 6 * 10 = 60.
Вычислите апофему

а = s/(2tg(180/n)) = 10/(2tg(180/6)) = 10/1,1547 = 8,66.
Площадь многоугольника: S = (a * p)/2 = (8,66 * 60)/2 = 259,8 см2.
Обратите внимание, что (8,66 * 60)/2 = (8,66/2) * 60 = 8,66 * (60/2), то есть на 2 можно сначала разделить апофему или периметр, а не произведение апофемы и периметра. При этом вы получите один и тот же результат.

Часть 2 из 2:

Описание принципа этого метода

1

Представьте правильный многоугольник как совокупность нескольких треугольников. Каждая сторона многоугольника представляет собой основание треугольника; таким образом, число треугольников равно числу сторон многоугольников. Все треугольники равны, то есть равны их стороны и высоты.
X
Источник информации

2

Вспомните формулу для вычисления площади треугольника

S = 1/2bh, где «b» — основание треугольника (которое совпадает со стороной многоугольника), «h» — высота треугольника (которая совпадает с апофемой правильного многоугольника).
X
Источник информации

3

Обратите внимание на сходство формул. Формула для вычисления площади правильного многоугольника S = 1/2аp, где «а» — сторона многоугольника, «р» — периметр многоугольника

Периметр равен стороне, умноженной на число сторон («n»); в правильном многоугольнике «n» равно числу треугольников, составляющих многоугольник. Таким образом, формула для вычисления площади многоугольника представляет собой формулу для вычисления площади треугольника, умноженную на количество треугольников в многоугольнике.
X
Источник информации

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры. Количество просмотров этой статьи: 166 673.

Категории: Геометрия

English:Find the Area of a Regular Pentagon

Italiano:Calcolare l’Area di un Pentagono

Português:Descobrir a Área de um Pentágono

Deutsch:Die Fläche eines Pentagons berechnen

Español:encontrar la superficie de un pentágono

Français:calculer l’aire d’un pentagone

中文:求五边形的面积

Bahasa Indonesia:Menghitung Luas Segi Lima

Nederlands:De oppervlakte van een vijfhoek berekenen

العربية:حساب مساحة خماسي الأضلاع

ไทย:หาพื้นที่ของรูปห้าเหลี่ยมธรรมดา

日本語:通常の五角形の面積を求める

हिन्दी:एक रेगुलर पंचकोण (Pentagone) का क्षेत्रफल निकालें

Türkçe:Bir Düzgün Beşgenin Alanı Nasıl Bulunur

Печать

Формула площади прямоугольника

Площадь прямоугольника обычно определяют как произведение длины на ширину. Эта формула выводится через разделение фигуры диагональю на два прямоугольных треугольника. Площадь каждой из фигур это половина произведения катетов. Общая площадь двух фигур целое произведение катетов. Этими катетами как раз и являются длина и ширина прямоугольника.

Но случаются ситуации, когда приходится искать площадь, но значений длины или ширины нет. Что делать тогда? Воспользоваться общей для всех четырех угольников формулой и найти площадь прямоугольника через диагонали.

Площадь любого выпуклого четырех угольника равняется произведению диагоналей на синус угла между ними. Диагонали прямоугольного треугольника равны между собой, поэтому значения угла и одной диагонали хватит для нахождения площади.

$$S={1\over2}*d^2*sin(a)$$

Внимательно следите за тем, какой именно угол дан в условиях задачи. Необходим острый угол при диагоналях. Если тупой, то можно воспользоваться формулой смежного угла. Если дан какой-либо из углов между стороной и диагональю, то придется искать другие пути решения.

Возможны ситуации, когда нужно найти площадь, а известен угол между диагональю и стороной и значение диагонали и стороны. Тогда нужно найти площадь прямоугольного треугольника через формулу с применением синуса и удвоить ее.

Рис. 3. Площадь прямоугольника.

В этом случае площадь прямоугольника будет равна:

S=d*b*sin(a)

Что мы узнали?

Мы поговорили о площади прямоугольного треугольника. Выделили отдельно формулу площади прямоугольника через диагонали. Поговорили о случаях, когда применение этой формулы невозможно или затруднено и привели альтернативный вариант решения.

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

2 Как найти площадь четырехугольника – трапеции

Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  • Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2,
    a и b – основания,
    h – перпендикуляр-высота.
  • Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h,
    k – линия средины.
    Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2,
    d1, d2 – диагонали,
    β – угол, полученный путем их пересечения.
  • Заданы 4 стороны: S = ((m + l)√k2 – ((m – l)2 + k2– d2)2/(4(m – l)2))/2,
    m, l – стороны параллельные,
    k, d – стороны боковые.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации